MTH 304 Final Solutions

1. Consider the multiplicative matrix groups

GL(2,R):{(Z Z) | (a,b,c,d) € R4 andad—bc;éO}
and

SL(2,R)_{<Z Z) | (a,b,¢,d) € R* and ad—bc_l}.

(a) Show that GL(2,R) and SL(2,R) are topological groups.

(b) Show that GL(2,R) is homeomorphic to an open subspace of R,
while SL(2, R) is homeomorphic to a closed subspace of R*. [Hint:
Consider the determinant map Det : R* — R.]

(¢) Show that GL(2,R) is not connected, and SL(2,R) is noncom-
pact.

Solution. (a) As both G and H are subsets of R?, they inherit the
subspace topology from the standard topology in the ambient space.
We know from MTH 301 that both G = GL(2,R) and H = SL(2,R)
are multiplicative groups, and H < G. So it suffices to show that G
is a topological group. In other words, we need to establish that the
matrix product operation

©:GxG—G: (A B)S AB,
and the matrix inversion operation
[:G—G: AL A

are continuous maps. We know that for two matrices
ai b az by

QD(A B) AR — ( aias + bicas  aibs + bido )

we have

crag +dica  c1by + dida



andforCz(Z Z)eG,Wehave

ney=c ad—bc\ —c a )

Viewing ¢ as a map
R* x R* - R* : (4, B) ¥ ((AB)11, (AB)12, (AB)21, (AB)2),

(where A = (ay,b1,c1,d1), B = (ag, by, co,d2) € R*) we see that its
four component functions of the form (A, B) — (AB);; are multivari-
able polynomials, and hence ¢ is continuous. Similarly, viewing I as a
function R* — R?, we see that its four components functions are ratio-
nal functions (i.e. polynomial/polynomial), which have the a common
denominator ad — bc # 0. Hence, I is a continuous function, and this
shows that G is a topological group.

(b) Now consider the determinant map

Det:G - R : (Z Z)Emd—ba

Once again, viewing Det as a map R* — R, we see that as ad — bc is
a polynomial, and so Det is continuous. It is apparent that as R is a
T} space,

A =Det R\ {0}) and Det ™1 ({1}),
from which (b) follows.

(¢c) The disconnectedness of G follows from the fact that the open
subsets
Det™}((—00,0)) and Det~1((0, 00))

form a separation for GG. To see the noncompactness of H, it suffices
to show that H is unbounded under the standard metric in R* (by the
Heine-Borel property). For any n € N, consider the matrix A4, € H

defined by
n 0
An = ( 0 1/n ) '

Then [|A,|| = v/n? + 1/n?, and

lim ||A,| = oo,
n—oo

which shows that {4, |n € N} is an unbounded subset of H. As H
has an unbounded subset, it is unbounded.



2. Show that if X is separable, then every collection of disjoint open sets
in X is countable.

Solution. Let A be a countable dense subset of X such that A = X.
Let {Ua}aes be an arbitrary collection of disjoint open sets in X.
Since A = X, for each «, there exists an z, € A N U,. Moreover,
the fact that the open sets in {U,}aes are mutually disjoint implies
that xo # xp, whenever a # . As A is countable, Y = {z,|a € J}
is a countable subset of X. Since Y is bijective with J, J has to be
countable.

3. (a) Define the one-point compactification of a locally compact Haus-
dorff space.

(b) Show that the open point compactification of N is homeomorphic
to {1/n|n € N} U{0}.
Solution. (a) See 1.2 (xxx) in the Lesson Plan.
(b) Let K = {1/n|n € N}. The inversion map
LR\ {0} = R\ {0} : > 1/x
is a homeomorphism, as it is a rational function. This shows that
Un:N—= K

is a homeomorphism. As K is a closed subset of the locally compact
Hausdorff space R, K is locally compact. Hence, it follows from 1.2
(xxxi) that K has a one-point compacitification. But that fact that
K = K U{0} is compact space (being a closed and bounded subspace
of R) and Hausdorff implies that K is the unique one point compact-
ification of K, up to homeomorphism.

Let X* = NU{oo} be the one-point compactification of X = N. Then
by defining ¢(c0) = 0, the map ¢ extends to a bijective map

i: X" =Y,

where Y = K U{0}. Since X* compact and Y is Hausdorff, it suffices
to show that i is continuous, and in particular, ¢ is continuous at oo.
Let U be a neighborhood of 0 in Y. Then by definition Y \ U is
compact, which implies that i~1(Y \ U) = ¢~} (K \ U) is compact, and
SO
CHU)=X\TH(Y\U)

is a open neighborhood of oo, which is mapped into U. This shows
that ¢ is continuous, and hence a homeomorphism.



4. Let X be a nonempty compact Hausdorff space without isolated points.

(a) Show that for each nonempty open U C X, and = € X, there
exists an open set V' C U such that « ¢ V.

(b) Show that there exists no surjective map f : N — X. [Hint:
Consider 1 = f(1) and U = X and apply (a) to get a V. Now
take z9 = f(2) and U = V, and so on. Finally, use the finite
intersection property.]

Solution 1. The argument is analogous to the one used in the proof
of Theorem 27.7 (Page 174) in Munkres.

5. If every real-valued continuous function on a metric space X is bounded,
then show that X is compact. [Hint: If X is not compact, consider
a sequence (z,,) with no covergent subsequence. Consider the map
xn, — n, and use the Tietze extension theorem.]

Solution. We know that a metric space is compact iff its sequentially
compact. Suppose that X is not compact. Then X is not sequentially
compact, which implies that there exists a sequence (z,,) in X that has
no convergent subsequence. This implies that the set A = {z,, | n € N}
has no limit points, and so A is closed in X. Define a function

f:A%N(CR):xann.

Then clearly, f is a continuous, as its a bijective map between two
discrete subspaces. Moreover, as X is metrizable, it is normal, and by
the Tietze’s extension theorem, f extends to a continuous map

f:X =R,
which is clearly unbounded.

6. Consider the standard quotient map ¢ : R? — S x S'(~ R2?/Z?)
induced by the equivalence relation ~ on R? defined by

(w1,y1) ~ (T2, 92) <= (T2 — 71,92 — Y1) € z>.

Consider the multiplicative matrix group

SL(2,Z)2{<CCL Z) ] (a,b,c,d)€Z4andad—bc:1}.



For a fixed matrix A= | ¢ ° € SL(2,Z), define a map My : R? —
c d

R? given by

= (5 )(0) = (e,

for any (z,y) € R2.

(a) Show that My induces a map My : ST x §1 — §1 x 1, which is
a homeomorphism.

(b) Show that for a fixed A € SL(2,Z), we have go My = My oq.
Solution. (a) & (b) We know that by definition, ¢((z,y)) =

[(x,y)], where [(x,y)] denotes the equivalence class of (x,y) under

~, given by
[(z,9)] ={(x+p,y+q)|p.qe}
We define s
My:S'x St — 8t x gt
by

Ma([(2,9))) = [Ma((z,y))], for all [(z,y)] € S* x S,

Then My is well-defined, for if [(z,y)] = [(«/,5')], then there

exists p, ¢ € Z such that (z +p,y + q) = (2/,y'), so that
Ma([(2",y)]) = [Ma(@',y)]

[Ma(z +p,y + q)]

[a(z +p) +b(y + q), c(z +p) + d(y + q)]

[

[M

Ma(z,y) + Ma(p,q)]
Ma(z,y)]
Ma([(z,y)].

Moreover, for all (z,7) € R?, we have that

(go Ma)((z,y) = q(Ma((x,y))

1l
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—~
2w
—_

R
S\_/
~



This shows that the diagram
Rz M4, g2
b b g
Slx gt M, gl gt

is commutative.

Since A € SL(2,Z), M4 is an invertible linear map, hence a
homeomorphism. Now for any [(z/,3)] € S! x S1, there exits
(x,7) € R? such that Ma((z,y)) = (z',%'), which implies that

Ma([(z,9)]) = [Ma((z,9)] = [(2/,3/)],

and so it follows that M, 4 is surjective. Moreover, we have that

Ma([(z,9)]) = Ma([(=",9)]) = [Ma((z,9))] = [Ma((@',y"))]
= (Maoq)((z,y)) = (Macq)((2',y))
= (g0 Ma)((z,y)) = (g0 Ma)((«',¢))
= [Ma((z,y))] = [Ma((z',¢))]
= [z, 9)] = [, )],

from which the injectivity of M 4 follows.

Since ¢ is a open and continuous map (why?), for an open set U C
St x St we have that ¢~!(U) is open in R?, so that M4 (¢~ *(U)
is open in R?, and so

(go Maog ) (U) = Ma(U)

is open in S' x S'. Finally, for an open set V in S' x S1, we have
that

MY (V)= (qo Maog )1 (V) = (g0 M g )(V),

which is open in S' x S'. This shows that M. 4 is a homeomor-
phism.
Solution 2. Alternatively, one could consider the diagram

R2 (**)

s

St gt Mgl gt



that is equivalent to the diagram (*) above. As the map g o My
is constant on each fiber of ¢ (why?), by 1.10 (x) of the Lesson
Plan, there exists a map M, as indicated in (**), that makes
the diagram commute. Consequently, (*) is also commutative.
Moreover, since ¢ and M4 are continuous maps, we have that
q o My is continuous, and once again, 1.10 (x) would imply that
M 4 is continuous.

The fact that ¢ is an open map (from class) and M4 is a homeo-
morphism implies that go M 4 is a surjective, continuous and open
map, and hence a quotient map. Finally, by 1.10 (xi), go M4 will
induce a homeomorphism S Lx 81 — St x S, which in this case
is precisely the map M 4.



