MTH 304 Final Solutions

1. Consider the multiplicative matrix groups

$$
\operatorname{GL}(2, \mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\,(a, b, c, d) \in \mathbb{R}^{4} \text { and } a d-b c \neq 0\right\}
$$

and

$$
\mathrm{SL}(2, \mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\,(a, b, c, d) \in \mathbb{R}^{4} \text { and } a d-b c=1\right\} .
$$

(a) Show that $\mathrm{GL}(2, \mathbb{R})$ and $\operatorname{SL}(2, \mathbb{R})$ are topological groups.
(b) Show that $\operatorname{GL}(2, \mathbb{R})$ is homeomorphic to an open subspace of \mathbb{R}^{4}, while $\operatorname{SL}(2, \mathbb{R})$ is homeomorphic to a closed subspace of \mathbb{R}^{4}. [Hint: Consider the determinant map Det : $\mathbb{R}^{4} \rightarrow \mathbb{R}$.]
(c) Show that $\mathrm{GL}(2, \mathbb{R})$ is not connected, and $\mathrm{SL}(2, \mathbb{R})$ is noncompact.

Solution. (a) As both G and H are subsets of \mathbb{R}^{4}, they inherit the subspace topology from the standard topology in the ambient space. We know from MTH 301 that both $G=\operatorname{GL}(2, \mathbb{R})$ and $H=\operatorname{SL}(2, \mathbb{R})$ are multiplicative groups, and $H \unlhd G$. So it suffices to show that G is a topological group. In other words, we need to establish that the matrix product operation

$$
\varphi: G \times G \rightarrow G:(A, B) \stackrel{\varphi}{\mapsto} A B,
$$

and the matrix inversion operation

$$
I: G \rightarrow G: A \stackrel{I}{\mapsto} A^{-1}
$$

are continuous maps. We know that for two matrices

$$
A=\left(\begin{array}{cc}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right), B=\left(\begin{array}{cc}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right) \in G
$$

we have

$$
\varphi(A, B)=A B=\left(\begin{array}{ll}
a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\
c_{1} a_{2}+d_{1} c_{2} & c_{1} b_{2}+d_{1} d_{2}
\end{array}\right)
$$

and for $C=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$, we have

$$
I(C)=C^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right) .
$$

Viewing φ as a map

$$
\mathbb{R}^{4} \times \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}:(A, B) \stackrel{\varphi}{\mapsto}\left((A B)_{11},(A B)_{12},(A B)_{21},(A B)_{22}\right),
$$

(where $\left.A=\left(a_{1}, b_{1}, c_{1}, d_{1}\right), B=\left(a_{2}, b_{2}, c_{2}, d_{2}\right) \in \mathbb{R}^{4}\right)$ we see that its four component functions of the form $(A, B) \mapsto(A B)_{i j}$ are multivariable polynomials, and hence φ is continuous. Similarly, viewing I as a function $\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$, we see that its four components functions are rational functions (i.e. polynomial/polynomial), which have the a common denominator $a d-b c \neq 0$. Hence, I is a continuous function, and this shows that G is a topological group.
(b) Now consider the determinant map

$$
\text { Det }: G \rightarrow \mathbb{R}:\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \stackrel{\text { Det }}{\longmapsto} a d-b c \text {. }
$$

Once again, viewing Det as a map $\mathbb{R}^{4} \rightarrow \mathbb{R}$, we see that as $a d-b c$ is a polynomial, and so Det is continuous. It is apparent that as \mathbb{R} is a T_{1} space,

$$
A=\operatorname{Det}^{-1}(\mathbb{R} \backslash\{0\}) \text { and } \operatorname{Det}^{-1}(\{1\}),
$$

from which (b) follows.
(c) The disconnectedness of G follows from the fact that the open subsets

$$
\operatorname{Det}^{-1}((-\infty, 0)) \text { and } \operatorname{Det}^{-1}((0, \infty))
$$

form a separation for G. To see the noncompactness of H, it suffices to show that H is unbounded under the standard metric in \mathbb{R}^{4} (by the Heine-Borel property). For any $n \in \mathbb{N}$, consider the matrix $A_{n} \in H$ defined by

$$
A_{n}=\left(\begin{array}{cc}
n & 0 \\
0 & 1 / n
\end{array}\right) .
$$

Then $\left\|A_{n}\right\|=\sqrt{n^{2}+1 / n^{2}}$, and

$$
\lim _{n \rightarrow \infty}\left\|A_{n}\right\|=\infty
$$

which shows that $\left\{A_{n} \mid n \in \mathbb{N}\right\}$ is an unbounded subset of H. As H has an unbounded subset, it is unbounded.
2. Show that if X is separable, then every collection of disjoint open sets in X is countable.
Solution. Let A be a countable dense subset of X such that $\bar{A}=X$. Let $\left\{U_{\alpha}\right\}_{\alpha \in J}$ be an arbitrary collection of disjoint open sets in X. Since $\bar{A}=X$, for each α, there exists an $x_{\alpha} \in A \cap U_{\alpha}$. Moreover, the fact that the open sets in $\left\{U_{\alpha}\right\}_{\alpha \in J}$ are mutually disjoint implies that $x_{\alpha} \neq x_{\beta}$, whenever $\alpha \neq \beta$. As A is countable, $Y=\left\{x_{\alpha} \mid \alpha \in J\right\}$ is a countable subset of X. Since Y is bijective with J, J has to be countable.
3. (a) Define the one-point compactification of a locally compact Hausdorff space.
(b) Show that the open point compactification of \mathbb{N} is homeomorphic to $\{1 / n \mid n \in \mathbb{N}\} \cup\{0\}$.
Solution. (a) See 1.2 (xxx) in the Lesson Plan.
(b) Let $K=\{1 / n \mid n \in \mathbb{N}\}$. The inversion map

$$
\iota: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R} \backslash\{0\}: x \stackrel{\iota}{\mapsto} 1 / x
$$

is a homeomorphism, as it is a rational function. This shows that

$$
\iota_{\mathbb{N}}: \mathbb{N} \rightarrow K
$$

is a homeomorphism. As K is a closed subset of the locally compact Hausdorff space \mathbb{R}, K is locally compact. Hence, it follows from 1.2 (xxxi) that K has a one-point compacitification. But that fact that $\bar{K}=K \cup\{0\}$ is compact space (being a closed and bounded subspace of \mathbb{R}) and Hausdorff implies that \bar{K} is the unique one point compactification of K, up to homeomorphism.
Let $X^{*}=\mathbb{N} \cup\{\infty\}$ be the one-point compactification of $X=\mathbb{N}$. Then by defining $\iota(\infty)=0$, the map ι extends to a bijective map

$$
\hat{\imath}: X^{*} \rightarrow Y
$$

where $Y=K \cup\{0\}$. Since X^{*} compact and Y is Hausdorff, it suffices to show that $\hat{\iota}$ is continuous, and in particular, $\hat{\iota}$ is continuous at ∞. Let U be a neighborhood of 0 in Y. Then by definition $Y \backslash U$ is compact, which implies that $\hat{\iota}^{-1}(Y \backslash U)=\iota^{-1}(K \backslash U)$ is compact, and so

$$
\hat{\iota}^{-1}(U)=X \backslash \hat{\iota}^{-1}(Y \backslash U)
$$

is a open neighborhood of ∞, which is mapped into U. This shows that $\hat{\iota}$ is continuous, and hence a homeomorphism.
4. Let X be a nonempty compact Hausdorff space without isolated points.
(a) Show that for each nonempty open $U \subset X$, and $x \in X$, there exists an open set $V \subset U$ such that $x \notin \bar{V}$.
(b) Show that there exists no surjective map $f: \mathbb{N} \rightarrow X$. [Hint: Consider $x_{1}=f(1)$ and $U=X$ and apply (a) to get a V. Now take $x_{2}=f(2)$ and $U=V$, and so on. Finally, use the finite intersection property.]

Solution 1. The argument is analogous to the one used in the proof of Theorem 27.7 (Page 174) in Munkres.
5. If every real-valued continuous function on a metric space X is bounded, then show that X is compact. [Hint: If X is not compact, consider a sequence (x_{n}) with no covergent subsequence. Consider the map $x_{n} \mapsto n$, and use the Tietze extension theorem.]
Solution. We know that a metric space is compact iff its sequentially compact. Suppose that X is not compact. Then X is not sequentially compact, which implies that there exists a sequence $\left(x_{n}\right)$ in X that has no convergent subsequence. This implies that the set $A=\left\{x_{n} \mid n \in \mathbb{N}\right\}$ has no limit points, and so A is closed in X. Define a function

$$
f: A \rightarrow \mathbb{N}(\subset \mathbb{R}): x_{n} \stackrel{f}{\mapsto} n .
$$

Then clearly, f is a continuous, as its a bijective map between two discrete subspaces. Moreover, as X is metrizable, it is normal, and by the Tietze's extension theorem, f extends to a continuous map

$$
\hat{f}: X \rightarrow \mathbb{R}
$$

which is clearly unbounded.
6. Consider the standard quotient map $q: \mathbb{R}^{2} \rightarrow S^{1} \times S^{1}\left(\approx \mathbb{R}^{2} / \mathbb{Z}^{2}\right)$ induced by the equivalence relation \sim on \mathbb{R}^{2} defined by

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow\left(x_{2}-x_{1}, y_{2}-y_{1}\right) \in \mathbb{Z}^{2} .
$$

Consider the multiplicative matrix group

$$
\mathrm{SL}(2, \mathbb{Z})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\,(a, b, c, d) \in \mathbb{Z}^{4} \text { and } a d-b c=1\right\} .
$$

For a fixed matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})$, define a map $M_{A}: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2} given by

$$
M_{A}((x, y))=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y},
$$

for any $(x, y) \in \mathbb{R}^{2}$.
(a) Show that M_{A} induces a map $\widetilde{M}_{A}: S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}$, which is a homeomorphism.
(b) Show that for a fixed $A \in \operatorname{SL}(2, \mathbb{Z})$, we have $q \circ M_{A}=\widetilde{M}_{A} \circ q$. Solution. (a) \& (b) We know that by definition, $q((x, y))=$ $[(x, y)]$, where $[(x, y)]$ denotes the equivalence class of (x, y) under \sim, given by

$$
[(x, y)]=\{(x+p, y+q) \mid p, q \in \mathbb{Z}\} .
$$

We define

$$
\widetilde{M}_{A}: S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}
$$

by

$$
\widetilde{M}_{A}([(x, y)])=\left[M_{A}((x, y))\right], \text { for all }[(x, y)] \in S^{1} \times S^{1}
$$

Then \widetilde{M}_{A} is well-defined, for if $[(x, y)]=\left[\left(x^{\prime}, y^{\prime}\right)\right]$, then there exists $p, q \in \mathbb{Z}$ such that $(x+p, y+q)=\left(x^{\prime}, y^{\prime}\right)$, so that

$$
\begin{aligned}
\widetilde{M}_{A}\left(\left[\left(x^{\prime}, y^{\prime}\right)\right]\right) & =\left[M_{A}\left(x^{\prime}, y^{\prime}\right)\right] \\
& =\left[M_{A}(x+p, y+q)\right] \\
& =[a(x+p)+b(y+q), c(x+p)+d(y+q)] \\
& =\left[M_{A}(x, y)+M_{A}(p, q)\right] \\
& =\left[M_{A}(x, y)\right] \\
& =\widetilde{M}_{A}([(x, y)] .
\end{aligned}
$$

Moreover, for all $(x, y) \in \mathbb{R}^{2}$, we have that

$$
\begin{aligned}
\left(q \circ M_{A}\right)((x, y)) & =q\left(M_{A}((x, y))\right. \\
& =\left[M_{A}((x, y))\right] \\
& =\widetilde{M}_{A}([x, y]) \\
& =\widetilde{M}_{A}(q((x, y)) \\
& =\left(\widetilde{M}_{A} \circ q\right)((x, y)) .
\end{aligned}
$$

This shows that the diagram

is commutative.
Since $A \in \mathrm{SL}(2, \mathbb{Z}), M_{A}$ is an invertible linear map, hence a homeomorphism. Now for any $\left[\left(x^{\prime}, y^{\prime}\right)\right] \in S^{1} \times S^{1}$, there exits $(x, y) \in \mathbb{R}^{2}$ such that $M_{A}((x, y))=\left(x^{\prime}, y^{\prime}\right)$, which implies that

$$
\widetilde{M}_{A}([(x, y)])=\left[M_{A}((x, y))\right]=\left[\left(x^{\prime}, y^{\prime}\right)\right],
$$

and so it follows that \widetilde{M}_{A} is surjective. Moreover, we have that

$$
\begin{aligned}
\widetilde{M}_{A}([(x, y)])=\widetilde{M}_{A}\left(\left[\left(x^{\prime}, y^{\prime}\right)\right]\right) & \Longrightarrow\left[M_{A}((x, y))\right]=\left[M_{A}\left(\left(x^{\prime}, y^{\prime}\right)\right)\right] \\
& \Longrightarrow\left(\widetilde{M}_{A} \circ q\right)((x, y))=\left(\widetilde{M}_{A} \circ q\right)\left(\left(x^{\prime}, y^{\prime}\right)\right) \\
& \Longrightarrow\left(q \circ M_{A}\right)((x, y))=\left(q \circ M_{A}\right)\left(\left(x^{\prime}, y^{\prime}\right)\right) \\
& \Longrightarrow\left[M_{A}((x, y))\right]=\left[M_{A}\left(\left(x^{\prime}, y^{\prime}\right)\right)\right] \\
& \Longrightarrow[(x, y)]=\left[\left(x^{\prime}, y^{\prime}\right)\right],
\end{aligned}
$$

from which the injectivity of \widetilde{M}_{A} follows.
Since q is a open and continuous map (why?), for an open set $U \subset$ $S^{1} \times S^{1}$, we have that $q^{-1}(U)$ is open in \mathbb{R}^{2}, so that $M_{A}\left(q^{-1}(U)\right.$ is open in \mathbb{R}^{2}, and so

$$
\left(q \circ M_{A} \circ q^{-1}\right)(U)=\widetilde{M}_{A}(U)
$$

is open in $S^{1} \times S^{1}$. Finally, for an open set V in $S^{1} \times S^{1}$, we have that

$$
\widetilde{M}_{A}^{-1}(V)=\left(q \circ M_{A} \circ q^{-1}\right)^{-1}(V)=\left(q \circ M_{A}^{-1} q^{-1}\right)(V),
$$

which is open in $S^{1} \times S^{1}$. This shows that \widetilde{M}_{A} is a homeomorphism.
Solution 2. Alternatively, one could consider the diagram

that is equivalent to the diagram $\left({ }^{*}\right)$ above. As the map $q \circ M_{A}$ is constant on each fiber of q (why?), by 1.10 (x) of the Lesson Plan, there exists a map \widetilde{M}_{A} as indicated in $(* *)$, that makes the diagram commute. Consequently, $\left({ }^{*}\right)$ is also commutative. Moreover, since q and M_{A} are continuous maps, we have that $q \circ M_{A}$ is continuous, and once again, 1.10 (x) would imply that \widetilde{M}_{A} is continuous.
The fact that q is an open map (from class) and M_{A} is a homeomorphism implies that $q \circ M_{A}$ is a surjective, continuous and open map, and hence a quotient map. Finally, by 1.10 (xi), $q \circ M_{A}$ will induce a homeomorphism $S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}$, which in this case is precisely the map \widetilde{M}_{A}.

