
MTH 304 Final Solutions

1. Consider the multiplicative matrix groups

GL(2,R) =

{(
a b
c d

)
| (a, b, c, d) ∈ R4 and ad− bc 6= 0

}
and

SL(2,R) =

{(
a b
c d

)
| (a, b, c, d) ∈ R4 and ad− bc = 1

}
.

(a) Show that GL(2,R) and SL(2,R) are topological groups.

(b) Show that GL(2,R) is homeomorphic to an open subspace of R4,
while SL(2,R) is homeomorphic to a closed subspace of R4. [Hint:
Consider the determinant map Det : R4 → R.]

(c) Show that GL(2,R) is not connected, and SL(2,R) is noncom-
pact.

Solution. (a) As both G and H are subsets of R4, they inherit the
subspace topology from the standard topology in the ambient space.
We know from MTH 301 that both G = GL(2,R) and H = SL(2,R)
are multiplicative groups, and H E G. So it suffices to show that G
is a topological group. In other words, we need to establish that the
matrix product operation

ϕ : G×G→ G : (A,B)
ϕ7−→ AB,

and the matrix inversion operation

I : G→ G : A
I7−→ A−1

are continuous maps. We know that for two matrices

A =

(
a1 b1
c1 d1

)
, B =

(
a2 b2
c2 d2

)
∈ G,

we have

ϕ(A,B) = AB =

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
,
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and for C =

(
a b
c d

)
∈ G, we have

I(C) = C−1 =
1

ad− bc

(
d −b
−c a

)
.

Viewing ϕ as a map

R4 × R4 → R4 : (A,B)
ϕ7−→ ((AB)11, (AB)12, (AB)21, (AB)22),

(where A = (a1, b1, c1, d1), B = (a2, b2, c2, d2) ∈ R4) we see that its
four component functions of the form (A,B) 7→ (AB)ij are multivari-
able polynomials, and hence ϕ is continuous. Similarly, viewing I as a
function R4 → R4, we see that its four components functions are ratio-
nal functions (i.e. polynomial/polynomial), which have the a common
denominator ad− bc 6= 0. Hence, I is a continuous function, and this
shows that G is a topological group.

(b) Now consider the determinant map

Det : G→ R :

(
a b
c d

)
Det7−−→ ad− bc.

Once again, viewing Det as a map R4 → R, we see that as ad − bc is
a polynomial, and so Det is continuous. It is apparent that as R is a
T1 space,

A = Det−1(R \ {0}) and Det−1({1}),
from which (b) follows.

(c) The disconnectedness of G follows from the fact that the open
subsets

Det−1((−∞, 0)) and Det−1((0,∞))

form a separation for G. To see the noncompactness of H, it suffices
to show that H is unbounded under the standard metric in R4 (by the
Heine-Borel property). For any n ∈ N, consider the matrix An ∈ H
defined by

An =

(
n 0
0 1/n

)
.

Then ‖An‖ =
√
n2 + 1/n2, and

lim
n→∞

‖An‖ =∞,

which shows that {An |n ∈ N} is an unbounded subset of H. As H
has an unbounded subset, it is unbounded.
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2. Show that if X is separable, then every collection of disjoint open sets
in X is countable.

Solution. Let A be a countable dense subset of X such that Ā = X.
Let {Uα}α∈J be an arbitrary collection of disjoint open sets in X.
Since Ā = X, for each α, there exists an xα ∈ A ∩ Uα. Moreover,
the fact that the open sets in {Uα}α∈J are mutually disjoint implies
that xα 6= xβ, whenever α 6= β. As A is countable, Y = {xα |α ∈ J}
is a countable subset of X. Since Y is bijective with J , J has to be
countable.

3. (a) Define the one-point compactification of a locally compact Haus-
dorff space.

(b) Show that the open point compactification of N is homeomorphic
to {1/n |n ∈ N} ∪ {0}.

Solution. (a) See 1.2 (xxx) in the Lesson Plan.

(b) Let K = {1/n |n ∈ N}. The inversion map

ι : R \ {0} → R \ {0} : x
ι7−→ 1/x

is a homeomorphism, as it is a rational function. This shows that

ι|N : N→ K

is a homeomorphism. As K is a closed subset of the locally compact
Hausdorff space R, K is locally compact. Hence, it follows from 1.2
(xxxi) that K has a one-point compacitification. But that fact that
K = K ∪ {0} is compact space (being a closed and bounded subspace
of R) and Hausdorff implies that K is the unique one point compact-
ification of K, up to homeomorphism.

Let X∗ = N∪{∞} be the one-point compactification of X = N. Then
by defining ι(∞) = 0, the map ι extends to a bijective map

ι̂ : X∗ → Y,

where Y = K ∪ {0}. Since X∗ compact and Y is Hausdorff, it suffices
to show that ι̂ is continuous, and in particular, ι̂ is continuous at ∞.
Let U be a neighborhood of 0 in Y . Then by definition Y \ U is
compact, which implies that ι̂−1(Y \U) = ι−1(K \U) is compact, and
so

ι̂−1(U) = X \ ι̂−1(Y \ U)

is a open neighborhood of ∞, which is mapped into U . This shows
that ι̂ is continuous, and hence a homeomorphism.

3



4. LetX be a nonempty compact Hausdorff space without isolated points.

(a) Show that for each nonempty open U ⊂ X, and x ∈ X, there
exists an open set V ⊂ U such that x /∈ V .

(b) Show that there exists no surjective map f : N → X. [Hint:
Consider x1 = f(1) and U = X and apply (a) to get a V . Now
take x2 = f(2) and U = V , and so on. Finally, use the finite
intersection property.]

Solution 1. The argument is analogous to the one used in the proof
of Theorem 27.7 (Page 174) in Munkres.

5. If every real-valued continuous function on a metric spaceX is bounded,
then show that X is compact. [Hint: If X is not compact, consider
a sequence (xn) with no covergent subsequence. Consider the map
xn 7→ n, and use the Tietze extension theorem.]

Solution. We know that a metric space is compact iff its sequentially
compact. Suppose that X is not compact. Then X is not sequentially
compact, which implies that there exists a sequence (xn) in X that has
no convergent subsequence. This implies that the set A = {xn |n ∈ N}
has no limit points, and so A is closed in X. Define a function

f : A→ N(⊂ R) : xn
f7−→ n.

Then clearly, f is a continuous, as its a bijective map between two
discrete subspaces. Moreover, as X is metrizable, it is normal, and by
the Tietze’s extension theorem, f extends to a continuous map

f̂ : X → R,

which is clearly unbounded.

6. Consider the standard quotient map q : R2 → S1 × S1(≈ R2/Z2)
induced by the equivalence relation ∼ on R2 defined by

(x1, y1) ∼ (x2, y2) ⇐⇒ (x2 − x1, y2 − y1) ∈ Z2.

Consider the multiplicative matrix group

SL(2,Z) =

{(
a b
c d

)
| (a, b, c, d) ∈ Z4 and ad− bc = 1

}
.
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For a fixed matrix A =

(
a b
c d

)
∈ SL(2,Z), define a map MA : R2 →

R2 given by

MA((x, y)) =

(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
,

for any (x, y) ∈ R2.

(a) Show that MA induces a map M̃A : S1 × S1 → S1 × S1, which is
a homeomorphism.

(b) Show that for a fixed A ∈ SL(2,Z), we have q ◦MA = M̃A ◦ q.
Solution. (a) & (b) We know that by definition, q((x, y)) =
[(x, y)], where [(x, y)] denotes the equivalence class of (x, y) under
∼, given by

[(x, y)] = {(x+ p, y + q) | p, q ∈ Z}.

We define
M̃A : S1 × S1 → S1 × S1

by

M̃A([(x, y)]) = [MA((x, y))], for all [(x, y)] ∈ S1 × S1.

Then M̃A is well-defined, for if [(x, y)] = [(x′, y′)], then there
exists p, q ∈ Z such that (x+ p, y + q) = (x′, y′), so that

M̃A([(x′, y′)]) = [MA(x′, y′)]
= [MA(x+ p, y + q)]
= [a(x+ p) + b(y + q), c(x+ p) + d(y + q)]
= [MA(x, y) +MA(p, q)]
= [MA(x, y)]

= M̃A([(x, y)].

Moreover, for all (x, y) ∈ R2, we have that

(q ◦MA)((x, y)) = q(MA((x, y))
= [MA((x, y))]

= M̃A([x, y])

= M̃A(q((x, y))

= (M̃A ◦ q)((x, y)).
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This shows that the diagram

R2 MA−−−−→ R2yp yp
S1 × S1 M̃A−−−−→ S1 × S1

(*)

is commutative.

Since A ∈ SL(2,Z), MA is an invertible linear map, hence a
homeomorphism. Now for any [(x′, y′)] ∈ S1 × S1, there exits
(x, y) ∈ R2 such that MA((x, y)) = (x′, y′), which implies that

M̃A([(x, y)]) = [MA((x, y))] = [(x′, y′)],

and so it follows that M̃A is surjective. Moreover, we have that

M̃A([(x, y)]) = M̃A([(x′, y′)]) =⇒ [MA((x, y))] = [MA((x′, y′))]

=⇒ (M̃A ◦ q)((x, y)) = (M̃A ◦ q)((x′, y′))
=⇒ (q ◦MA)((x, y)) = (q ◦MA)((x′, y′))
=⇒ [MA((x, y))] = [MA((x′, y′))]
=⇒ [(x, y)] = [(x′, y′)],

from which the injectivity of M̃A follows.

Since q is a open and continuous map (why?), for an open set U ⊂
S1 × S1, we have that q−1(U) is open in R2, so that MA(q−1(U)
is open in R2, and so

(q ◦MA ◦ q−1)(U) = M̃A(U)

is open in S1×S1. Finally, for an open set V in S1×S1, we have
that

M̃−1A (V ) = (q ◦MA ◦ q−1)−1(V ) = (q ◦M−1A q−1)(V ),

which is open in S1 × S1. This shows that M̃A is a homeomor-
phism.

Solution 2. Alternatively, one could consider the diagram

R2

q
��

q◦MA

&&

S1 × S1 M̃A // S1 × S1

(**)
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that is equivalent to the diagram (*) above. As the map q ◦MA

is constant on each fiber of q (why?), by 1.10 (x) of the Lesson

Plan, there exists a map M̃A as indicated in (**), that makes
the diagram commute. Consequently, (*) is also commutative.
Moreover, since q and MA are continuous maps, we have that
q ◦MA is continuous, and once again, 1.10 (x) would imply that

M̃A is continuous.

The fact that q is an open map (from class) and MA is a homeo-
morphism implies that q◦MA is a surjective, continuous and open
map, and hence a quotient map. Finally, by 1.10 (xi), q ◦MA will
induce a homeomorphism S1 × S1 → S1 × S1, which in this case
is precisely the map M̃A.
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